A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells

2016 
Abstract Hollow nanofibers of PrBa 0.5 Sr 0.5 Co 2 O 5+ δ (PBSC), created by an electrospinning process, are assembled into a three dimensional (3D) fibrous porous electrode, providing facile pathways for gas transport and excellent electrical conductivity for efficient charge transfer and, thus, greatly enhancing the rate of oxygen reduction reactions (ORR), as confirmed by the small electrode polarization resistance and low activation energy. A simple geometric modeling suggests that an electrode with longer fibers tends to be more efficient in facilitating mass and charge transfer under the conditions studied. A solid oxide fuel cell based on this 3D fibrous cathode demonstrates a peak power density of 1.11 W cm −2 at 550 °C when humidified H 2 was used as fuel and ambient air as oxidant. The fibrous architecture also shows excellent stability under the operating conditions. Further and in particular, the high-performance hollow-fiber electrodes are also applicable to other energy storage and conversion systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    61
    Citations
    NaN
    KQI
    []