Random versus regular square lattice experimental comparison for a subwavelength resonant metasurface

2021 
An experimental comparison is reported here between two equivalent resonant subwavelength metasurfaces made of long aluminum beams glued closely together on a thin aluminum plate. One metasurface has a random distribution of the resonator beams, and the other has a regular square lattice of pitch 1.5 cm. The random lattice shows the “resonant” behavior of a typical metasurface, with a wide full bandgap for the first A0 Lamb mode. Instead, the regular square lattice combines Fano resonance with Bragg scattering at the edges of the passband, thus creating anisotropy and a pseudo bandgap. Comparisons with numerical simulations are performed, with good agreement with the experimental data. The multimodal response of the beams is also responsible for double negativity in a narrow frequency band, and the event of a pseudo bandgap around this same flexural resonance. In addition, the scattering regimes for both the random and regular metasurfaces are characterized using coherent and incoherent signal analysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []