Compensation for effects of linear motion in MR imaging

1989 
Various compensation methods for different types of motion during MR image acquisition have been proposed. Presented here is a postprocessing scheme for eliminating artifacts due to linear, intra-slice motion of known velocity. The data for each phase encoding or “view” acquired from a moving object are shown to differ from those which would be measured from the stationary object by a phase factor which depends on the object's displacement from a reference point. This derivation is then used to propose a correction scheme for linear motion in which all phase encodings measured at different positions of the moving object are collapsed onto the same reference position. After subsequent reconstruction, the object appears perfectly “focused.” By selection of different reference positions, the method permits positioning of the compensated object as desired within the field of view of the image. This property allows the method to be extended to create sequences of corrected images with smooth object motion between frames of the sequence. The basic correction scheme and its variations were tested experimentally in phantom studies with velocities as large as 8 cm/s. © 1989 Academic Press, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    57
    Citations
    NaN
    KQI
    []