Layered ceramics based on InGaO3(ZnO)2: Preparation and experimental investigation of high-temperature heat capacity and thermal conductivity

2021 
Abstract This paper reports on a method for producing ceramics from a high-purity, submicron InGaO3(ZnO)2 powder synthesised using a PVA-assisted gel combustion method, as well as an experimental study of the thermophysical properties of the ceramic materials obtained. The platelet-like crystallites of the InGaO3(ZnO)2 obtained were several microns long and up to several hundred nanometres thick. Layered ceramics obtained by sintering compacted InGaO3(ZnO)2 powders at temperatures of 1373–1773 K had a bulk density that was 68–96 % of the theoretical density. The temperature dependence of heat capacity in the range 306–1346 K was studied experimentally for InGaO3(ZnO)2 using the DSC method. It was found that, in the range 323–1173 K, layered InGaO3(ZnO)2 ceramics had a low thermal conductivity, which decreased from 2.0–1.3 W/(m K. The results obtained make it possible to consider this material as a promising thermal barrier coating.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []