Substrate-Triggered Activation of a Synthetic [Fe2(μ-O)2] Diamond Core for C–H Bond Cleavage

2011 
An [FeIV2(μ-O)2] diamond core structure has been postulated for intermediate Q of soluble methane monooxygenase (sMMO-Q), the oxidant responsible for cleaving the strong C–H bond of methane and its hydroxylation. By extension, analogous species may be involved in the mechanisms of related diiron hydroxylases and desaturases. Because of the paucity of well-defined synthetic examples, there are few, if any, mechanistic studies on the oxidation of hydrocarbon substrates by complexes with high-valent [Fe2(μ-O)2] cores. We report here that water or alcohol substrates can activate synthetic [FeIIIFeIV(μ-O)2] complexes supported by tetradentate tris(pyridyl-2-methyl)amine ligands (1 and 2) by several orders of magnitude for C–H bond oxidation. On the basis of detailed kinetic studies, it is postulated that the activation results from Lewis base attack on the [FeIIIFeIV(μ-O)2] core, resulting in the formation of a more reactive species with a [X–FeIII–O–FeIV═O] ring-opened structure (1–X, 2–X, X = OH– or OR–). Tr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    44
    Citations
    NaN
    KQI
    []