Adaptive Financial Fraud Detection in Imbalanced Data with Time-Varying Poisson Processes

2019 
This paper discusses financial fraud detection in imbalanced dataset using homogeneous and non-homogeneous Poisson processes. The probability of predicting fraud on the financial transaction is derived. Applying our methodology to financial datasets with different fraud profiles shows a better predicting power than a baseline approach, especially in the case of higher imbalanced data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []