Poverty in Central Java using Multivariate Adaptive Regression Splines and Bootstrap Aggregating Multivariate Adaptive Regression Splines
2021
Population poverty is one of the serious problems in Indonesia. The percentage of population poverty used as a means for a statistical instrument to be guidelines to create standard policies and evaluations to reduce poverty. The aims of the research are to determine model population poverty using MARS and Bagging MARS then to understand the most influence variable population poverty of Central Java Province in 2018. The result of this research is the Bagging MARS model showed better accuracy than the MARS model. Since, GCV value in the Bagging MARS model is 0,009798721 and GCV value in the MARS model is 6,985571. The most influential variable poverty population of Central Java Province in 2018 in the MARS model is the percentage of the old school expectation rate (X9). Then, the most influential variable in the Bagging MARS model is the number of diarrhea (X1).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
1
References
0
Citations
NaN
KQI