Coincidence Detection of Membrane Stretch and Extracellular pH by the Proton-Sensing Receptor OGR1 (GPR68).
2018
Summary The physical environment critically affects cell shape, proliferation, differentiation, and survival by exerting mechanical forces on cells. These forces are sensed and transduced into intracellular signals and responses by cells. A number of different membrane and cytoplasmic proteins have been implicated in sensing mechanical forces, but the picture is far from complete, and the exact transduction pathways remain largely elusive. Furthermore, mechanosensation takes place alongside chemosensation, and cells need to integrate physical and chemical signals to respond appropriately and ensure normal tissue and organ development and function. Here, we report that ovarian cancer G protein coupled receptor 1 (OGR1) (aka GPR68) acts as coincidence detector of membrane stretch and its physiological ligand, extracellular H + . Using fluorescence imaging, substrates of different stiffness, microcontact printing methods, and cell-stretching techniques, we show that OGR1 only responds to extracellular acidification under conditions of membrane stretch and vice versa. The level of OGR1 activity mirrors the extent of membrane stretch and degree of extracellular acidification. Furthermore, actin polymerization in response to membrane stretch is critical for OGR1 activity, and its depolymerization limits how long OGR1 remains responsive following a stretch event, thus providing a "memory" for past stretch. Cells experience changes in membrane stretch and extracellular pH throughout their lifetime. Because OGR1 is a widely expressed receptor, it represents a unique yet widespread mechanism that enables cells to respond dynamically to mechanical and pH changes in their microenvironment by integrating these chemical and physical stimuli at the receptor level.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
49
References
22
Citations
NaN
KQI