Peptide Nanotube‐Templated Biomineralization of Cu2−xS Nanoparticles for Combination Treatment of Metastatic Tumor

2019 
1D peptide nanostructures (i.e., peptide nanotubes, PNTs) exhibit tunable chemo-physical properties and functions such as improved tissue adhesion, increased cellular uptake, and elongated blood circulation. In this study, the application of PNTs as a desirable 1D template for biomineralization of Cu2- x S nanoparticles (Cu2- x S NPs, x = 1-2) is reported. Monodisperse Cu2- x S NPs are uniformly coated on the peptide nanotubes owing to the specific high binding affinity of Cu ions to the imidazole groups exposed on the surface of nanotubes. The Cu2- x S NP-coated PNTs are further covalently grafted with an oxaliplatin prodrug (Pt-CuS-PNTs) to construct a versatile nanoplatform for combination cancer therapy. Upon 808 nm laser illumination, the nanoplatform induces significant hyperthermia effect and elicits reactive oxygen species generation through electron transfer and Fenton-like reaction. It is demonstrated that the versatile nanoplatform dramatically inhibits tumor growth and lung metastasis of melanoma in a B16-F10 melanoma tumor-bearing mouse model by combined photo- and chemotherapy. This study highlights the ability of PNTs for biomineralization of metal ions and the promising potential of such nanoplatforms for cancer treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    14
    Citations
    NaN
    KQI
    []