Design, Manufacture and Test of an In-Situ Consolidated Thermoplastic Variable-Stiffness Wingbox

2019 
Thermoplastic composites offer the potential for reducing the overall manufacturing costs of aircraft structures by allowing continuous production methods to be applied without the ancillary need for ovens or autoclaves by using in situ consolidation techniques. In the last 10 years, carbon-fiber/polyether-ether-ketone-based composites have become available with desirable combinations of strength, stiffness, and toughness properties. By combining the latest manufacturing techniques with these new materials and with new design methods, cheaper, lighter, and better-performing aircraft structures become a viable prospect. As such, a variable-stiffness unitized integrated-stiffener thermoplastic composite wingbox was developed, which was manufactured by laser-assisted automated tape placement with winding and in situ consolidation. The wingbox loads were determined by assuming its location to be at 85% of the wing semispan of a B737/A320-size aircraft. At this load, the wingbox was designed to buckle elastica...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    18
    Citations
    NaN
    KQI
    []