Dual-Resonance Enhanced Quantum Light-Matter Interactions In Deterministically Coupled Quantum-Dot-Micopillars.
2021
Optical microcavities have widely been employed to enhance either the optical excitation or the photon emission processes for boosting light matter interactions at nanoscale. When both the excitation and emission processes are simultaneously facilitated by the optical resonances provided by the microcavities, as referred to the dual-resonance condition in this article, the performances of many nanophotonic devices approach to the optima. In this work, we present versatile accessing of dual-resonance conditions in deterministically coupled quantum-dot(QD)-micopillars, which enables emission from exciton (X) - charged exciton (CX) transition with improved single-photon purity. In addition, the rarely observed up-converted single-photon emission process is achieved under dual-resonance condition. We further exploit the vectorial nature of the high-order cavity modes to significantly improve the excitation efficiency under the dual-resonance condition. The dual-resonance enhanced light-matter interactions in the quantum regime provides a viable path for developing integrated quantum photonic devices based on cavity quantum electrodynamics (QED) effect e.g., highly-efficient quantum light sources and quantum logical gates.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI