Prostaglandin Synthetase and Cytochrome P-450-dependent Metabolism of (±)Benzo(a)pyrene 7,8-Dihydrodiol by Enriched Populations of Rat Clara Cells and Alveolar Type II Cells

1983 
The metabolism of (±)- trans -7,8-dihydroxy-7,8-dihydrobenzo( a )pyrene (BP-7,8-diol) by prostaglandin synthetase and cytochrome P-450-dependent monooxygenases was studied using enriched fractions of Clara cells and alveolar type II cells from rat lung. Arachidonic acid-fortified fractions enriched in Clara cells and alveolar type II cells metabolized BP-7,8-diol to the 7,10/8,9-tetrol of benzo( a )pyrene and the 7/8,9,10-tetrol of benzo( a )pyrene. These tetrols are formed upon solvolysis of (±)-7β,8α-dihydroxy-9α,10α- epoxy-7,8,9,10-tetrahydrobenzo( a )pyrene (BP diol-epoxide I). Arachidonic acid-dependent metabolism of BP-7,8-diol to BP diol-epoxide I in enriched Clara cells and alveolar type II cells was completely inhibited by indomethacin, a classical inhibitor of prostaglandin synthetase. Enriched Clara cells and alveolar type II cells also metabolized BP-7,8-diol to BP diol-epoxide I in the presence of NADPH. Amounts of BP diol-epoxide I-derived tetrols formed from BP-7,8-diol by the prostaglandin synthetase-dependent and the cytochrome P-450-dependent pathways varied significantly between the two pulmonary cell fractions examined. In fractions enriched in Clara cells, cytochrome P-450-dependent BP-7,8-diol oxidation was higher than was prostaglandin synthetase-dependent BP-7,8-diol oxidation; while in fractions of alveolar type II cells, prostaglandin synthetase-dependent BP-7,8-diol oxidation to BP diol-epoxide I predominated. Pretreatment of rats with β-naphthoflavone resulted in a 2- to 3-fold increase in BP diol-epoxide I formation by prostaglandin synthetase and cytochrome P-450-dependent monooxygenases in both enriched Clara cells and alveolar type II cells. These increases in BP-7,8-diol oxidation to BP diol-epoxide I appear to be due to induction of the two enzymatic pathways in both pulmonary cell types. No qualitative changes in the pattern of BP-7,8-diol metabolism by either enzymatic pathway in enriched Clara cells or alveolar type II cells were observed following β-naphthoflavone treatment. The results suggest that pulmonary prostaglandin synthetase may serve as either an additional or an alternative bioactivating enzyme to the cytochrome P-450-dependent monooxygenases for the formation of reactive chemical carcinogens in the lung.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    44
    Citations
    NaN
    KQI
    []