Synthesis of Bottlebrush Polystyrenes with Uniform, Alternating, and Gradient Distributions of Brushes Via Living Anionic Polymerization and Hydrosilylation
2015
By combining living anionic polymerization and hydrosilylation, densely grafted bottlebrush polymers with controlled spacing of branch points are prepared. Dimethyl(4-vinylphenyl)silane and dimethyl(4-(1-phenylvinyl)phenyl)silane are anionically (co)polymerized to synthesize uniform, alternating, and gradient in-chain silyl–hydride (Si–H) functionalized backbones. The spacing of branch points is controlled effectively by regulating the distribution of Si–H groups along the backbones. Three backbones with a similar number of Si–H groups but variable distributions are used to synthesize corresponding bottlebrush polymers via hydrosilylation between the backbones and chain-end vinyl functionalized polystyrene. The uniformly grafted bottlebrush exhibits the highest hydrodynamic radius (Rh) of 5.6 nm and the lowest Tg of 79 °C which may be attributed to its compact grafted structure. This methodology exhibits high efficiency and convenience for the construction of bottlebrushes with controlled distribution of brushes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
32
Citations
NaN
KQI