Pseudo Quantum Electrodynamics and Chern-Simons theory Coupled to Two-dimensional Electrons.

2020 
We study a nonlocal theory that combines both the Pseudo quantum electrodynamics (PQED) and Chern-Simons actions among two-dimensional electrons. In the static limit, we conclude that the competition of these two interactions yields a Coulomb potential with a screened electric charge given by $e^2/(1+\theta^2)$, where $\theta$ is the dimensionless Chern-Simons parameter. This could be useful for describing the substrate interaction with two-dimensional materials and the doping dependence of the dielectric constant in graphene. In the dynamical limit, we calculate the effective current-current action of the model considering Dirac electrons. We show that this resembles the electromagnetic and statistical interactions, but with two different overall constants, given by $e^2/(1+\theta^2)$ and $e^2\theta/(1+\theta^2)$. Furthermore, as it is expected, the $\theta$-parameter does not provide a topological mass for the Gauge field. Thereafter, we apply the one-loop perturbation theory in our model. Within this approach, we calculate the electron self-energy, the electron renormalized mass, the corrected gauge-field propagator, and the renormalized Fermi velocity for both high- and low-speed limits, using the renormalization group. In particular, we obtain a maximum value of the renormalized mass for $\theta\approx 0.36$. This behavior is an important signature of the model and relations with doping control of band gap size are also discussed in the conclusions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    6
    Citations
    NaN
    KQI
    []