Functional characterization of thousands of type 2 diabetes-associated and chromatin-modulating variants under steady state and endoplasmic reticulum stress

2020 
A major goal in functional genomics and complex disease genetics is to identify functional cis-regulatory elements (CREs) and single nucleotide polymorphisms (SNPs) altering CRE activity in disease-relevant cell types and environmental conditions. We tested >13,000 sequences containing each allele of 6,628 SNPs associated with altered in vivo chromatin accessibility in human islets and/or type 2 diabetes risk (T2D GWAS SNPs) for transcriptional activity in β cell under steady state and endoplasmic reticulum (ER) stress conditions using the massively parallel reporter assay (MPRA). Approximately 30% (n=1,983) of putative CREs were active in at least one condition. SNP allelic effects on in vitro MPRA activity strongly correlated with their effects on in vivo islet chromatin accessibility (Pearson r=0.52), i.e., alleles associated with increased chromatin accessibility exhibited higher MPRA activity. Importantly, MPRA identified 220/2500 T2D GWAS SNPs, representing 104 distinct association signals, that significantly altered transcriptional activity in β cells. This study has thus identified functional β cell transcription-activating sequences with in vivo relevance, uncovered regulatory features that modulate transcriptional activity in β cells under steady state and ER stress conditions, and substantially expanded the set of putative functional variants that modulate transcriptional activity in β cells from thousands of genetically-linked T2D GWAS SNPs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    1
    Citations
    NaN
    KQI
    []