Using historical museum samples to examine divergent and parallel evolution in the invasive starling

2021 
During the Anthropocene, Earth has experienced unprecedented habitat loss, native species decline, and global climate change. Concurrently, greater globalisation is facilitating species movement, increasing the likelihood of alien species establishment and propagation. There is a great need to understand what influences a species9 ability to persist or perish within a new or changing environment. Examining genes that may be associated with a species9 invasion success or persistence informs invasive species management, assists with native species preservation, and sheds light on important evolutionary mechanisms that occur in novel environments. This approach can be aided by coupling spatial and temporal investigations of evolutionary processes. Here we use the common starling, Sturnus vulgaris, to identify parallel and divergent evolutionary change between contemporary native and invasive range samples and their common ancestral population. To do this, we use reduced-representation sequencing of native samples collected recently in north-western Europe and invasive samples from Australia, together with museum specimens sampled in the UK during the mid-19th Century. We found evidence of parallel selection on both continents, possibly resulting from common global selective forces such as exposure to pollutants (e.g. TCDD) and food carbohydrate content. We also identified divergent selection in these populations, which might be related to adaptive changes in response to the novel environment encountered in the introduced Australian range. Interestingly, signatures of selection are equally as common within both invasive and native range contemporary samples. Our results demonstrate the value of including historical samples in genetic studies of invasion and highlight the ongoing and occasionally parallel role of adaptation in both native and invasive ranges.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []