Molecular Basis of the Thermostability and Thermophilicity of Laminarinases: X-ray Structure of the Hyperthermostable Laminarinase from Rhodothermus marinus and Molecular Dynamics Simulations

2011 
Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 A resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting β-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge–charge interactions permeating the hydrophobic core of t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    21
    Citations
    NaN
    KQI
    []