Computational geometric methods for preferential clustering of particle suspensions

2021 
Abstract A geometric numerical method for simulating suspensions of spherical and non-spherical particles with Stokes drag is proposed. The method combines divergence-free matrix-valued radial basis function interpolation of the fluid velocity field with a splitting method integrator that preserves the sum of the Lyapunov spectrum while mimicking the centrifuge effect of the exact solution. We discuss how breaking the divergence-free condition in the interpolation step can erroneously affect how the volume of the particulate phase evolves under numerical methods. The methods are tested on suspensions of 104 particles evolving in discrete cellular flow field. The results are that the proposed geometric methods generate more accurate and cost-effective particle distributions compared to conventional methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []