Neuromuscular responses of the plantar flexors to whole‐body vibration
2017
: Enhanced physical performance following whole-body vibration (WBV) has been attributed to increased muscle activity; however, few studies have measured the mechanisms underlying these changes. The objective of this study was to measure the responsiveness of the Ia pathway as well as contractile properties in 16 young adults (24±2 years, eight men, eight women) following repeated bouts of acute WBV (45 Hz, 2 mm). Hoffman reflexes (H-reflex), compound muscle action potentials (M-wave), and twitch contractile properties were measured prior to and immediately following five 1-minute WBV exposures, and at 3, 5, 10, and 20 minute post-WBV. M-wave and H-reflex amplitudes decreased by 8% (P .05). In response to acute WBV, the root mean square of the soleus electromyography signal (EMGRMS ) increased by 8%, while the EMGRMS of the lateral gastrocnemius increased by 3% (P<.05). These data indicate that the responsiveness of the Ia pathway is diminished and contractile function is impaired immediately following WBV, and that the neural mechanisms underlying improved performance following WBV lie in alternative hypotheses possibly involving spindle disfacilitation or Golgi afferent modulation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
6
Citations
NaN
KQI