Sex-dependent modulation of immune development by secretory IgA-coated Lactobacillus reuteri isolated from breast milk.

2021 
ABSTRACT Lactobacilli, commonly present in human breast milk, appear to colonize the neonatal gut and provide protection to infants against various infections, thereby promoting immune development. This study examined the potential probiotic role of breast milk–derived Lactobacillus reuteri FN041 in immune development in mice. The FN041 were gavaged either to BALB/c dams (n = 6/group) during the lactation period or to their offspring (n = 6/sex per intervention) after weaning separately (cointervention). All interventions induced increased intestinal barriers in 5-wk-old offspring, especially in the females. Immunoglobulin A plasmocytes in ileal tissue and secretory IgA (sIgA) in ileal contents increased in all 5-wk-old offspring of cointervention. The activation of mRNA expression of 17 genes was sex-dependent, especially in 5-wk-old offspring. Broader genes were regulated in female mice. The effect of cointervention on the Shannon index of total microbiota is sex-related. The Shannon index of sIgA-coated microbiota increased in both sexes. The sIgA-coated microbiota showed intergroup differences according to β diversity, especially in female mice that showed an increase in Bifidobacterium of Actinobacteria. The sIgA-coated Bifidobacteria was positively correlated with mRNA expression of Tlr9. The sIgA-coated Lactobacillus in male offspring was negatively correlated with mRNA expression of Cldn2. In conclusion, L. reuteri FN041 promoted the production of intestinal sIgA and the expression of genes related to antimicrobial peptides in the offspring and enhanced the function of the mucosal barrier, depending on sex and treatment manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    3
    Citations
    NaN
    KQI
    []