Cognitive Analysis of Working Memory Load from Eeg, by a Deep Recurrent Neural Network

2018 
One of the common modalities for observing mental activity is electroencephalogram (EEG) signals. However, EEG recording is highly susceptible to various sources of noise and to inter subject differences. In order to solve these problems we present a deep recurrent neural network (RNN) architecture to learn robust features and predict the levels of cognitive load from EEG recordings. Using a deep learning approach, we first transform the EEG time series into a sequence of multispectral images which carries spatial information. Next, we train our recurrent hybrid network to learn robust representations from the sequence of frames. The proposed approach preserves spectral, spatial and temporal structures and extracts features which are less sensitive to variations along each dimension. Our results demonstrate cognitive memory load prediction across four different levels with an overall accuracy of 92.5% during the memory task execution and reduce classification error to 7.61% in comparison to other state-of-art techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    52
    Citations
    NaN
    KQI
    []