Modelling Phosphorus Sorption Kinetics and the Longevity of Reactive Filter Materials Used for On-Site Wastewater Treatment
2019
Use of reactive filter media (RFM) is an emerging technology in small-scale wastewater treatment to improve phosphorus (P) removal and filter material longevity for making this technology sustainable. In this study, long-term sorption kinetics and the spatial dynamics of sorbed P distribution were simulated in replaceable P-filter bags filled with 700 L of reactive material and used in real on-site treatment systems. The input data for model calibration were obtained in laboratory trials with Filtralite P®, Polonite® and Top16. The P concentration breakthrough threshold value was set at an effluent/influent (C/C0) ratio of 1 and simulations were performed with P concentrations varying from 1 to 25 mg L−1. The simulation results showed that influent P concentration was important for the breakthrough and longevity, and that Polonite performed best, followed by Top16 and Filtralite P. A 100-day break in simulated intermittent flow allowed the materials to recover, which for Polonite involved slight retardation of P saturation. The simulated spatial distribution of P accumulated in the filter bags showed large differences between the filter materials. The modelling insights from this study can be applied in design and operation of on-site treatment systems using reactive filter materials.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
31
References
1
Citations
NaN
KQI