The Impact of Wastewater Treatment Effluent on the Biogeochemistry of the Enoree River, South Carolina, During Drought Conditions

2014 
Drought conditions should magnify the effect of wastewater treatment plant (WWTP) effluent on river biogeochemistry. This study examined the impact of WWTP effluent on the Enoree River in the piedmont region of South Carolina during a period of significant drought. The Enoree River lacks impoundments, upstream agricultural runoff, and significant industrial point sources, so the single most important human influence on river chemistry is WWTP effluent. Water samples were collected from 28 locations on the Enoree River, 13 of its tributaries, and the effluent of four WWTPs. Effluent from the WWTP furthest upstream increased the salinity of the river and temporal variation and concentrations of most ions, especially nitrate, phosphate, sulfate, sodium, and chloride. The upstream WWTP set the downstream chemical composition of the river, with increasing proportions of chloride, sodium, and sulfate and decreasing proportions of dissolved silicon and bicarbonate. Downstream WWTPs had little or no impact on the chemical composition of the river. Mixing model results show that dilution was the dominant process of the downstream decrease in solute concentrations, but in-channel uptake mechanisms also contributed to declines in concentrations of nitrate, phosphate, and carbon dioxide. Despite dilution and uptake, the chemical signature of WWTP effluent was still evident 135 km downstream. These results lead to a better understanding of the effects of WWTP effluent on the biogeochemistry of rivers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    2
    Citations
    NaN
    KQI
    []