Optimized energy storage properties of BaTiO3-based ceramics with enhanced grain boundary effect

2021 
Energy storage dielectric ceramics play a more and more important role in power or electronics systems as a pulse power material, and the development of new technologies has put forward higher requirements for energy storage properties. Here, the sol-gel method was used to synthetize the 0.9BaTiO3-0.1Bi(Mg1/2Zr1/2)O3 (0.9BT–0.1BMZ) precursor powder and 0.9BT-0.1BMZ ceramics with pseudocubic phase was obtained. The 0.9BT-0.1BMZ dielectric ceramics possessed a strong relaxation behavior with 1.64 relaxation degree (g) and 0.15 eV relaxation activation energy (Ea) fitted by modified Curie–Weiss law and Vogel-Fulcher formulas, respectively. The most important was that by controlling the grain size to be reduced, the discharge energy storage density had been improved to 2.0 J/cm3 with high breakdown strength (325 kV/cm). In addition, the comprehensive analysis of electric field distributions, breakdown paths, and impedance spectra was illustrated the enhanced grain boundary effect can improve the energy storage performance obviously.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []