Altered information flow and microstructure abnormalities of visual cortex in normal-tension glaucoma: Evidences from rest-state fMRI and DKI.

2020 
Abstract Normal tension glaucoma (NTG) is a neurodegenerative disease involves multiple brain areas, but the mechanism remains unclear. The aim of this study is to investigate the correlation between structural injury and functional reorganization in the brain of NTG, using resting-state functional MRI and diffusion kurtosis imaging (DKI) data acquired for 26 NTG patients and 24 control subjects. Granger causality analysis (GCA) was used to calculate the effective connectivity (EC) between visual cortices and the whole brain to reflect the information flow. The fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) derived from DKI of visual cortices were extracted to evaluate structural injury. Microstructural abnormalities were detected in bilateral BA17, BA18, and BA19. NTG patients showed significantly decreased EC from BA17 to higher visual cortices and increase EC from higher visual cortices to BA17. The EC from BA17 to posterior cingulate cortex (PCC) and from PCC to BA17 both significantly increased, while the EC from right BA18 and BA19 to PCC significantly decreased. Decreased EC between somatosensory cortex and BA17, as well as the decreased ECs between supramarginal gyrus (SMA) and BA17/BA19 were detected. Several abnormal ECs were significantly correlated with microstructural injuries of BA17 and BA18. In conclusion, NTG causes reorganization of information flows among visual cortices and other brain areas, which is consistent with brain microstructural injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    5
    Citations
    NaN
    KQI
    []