Characterization of adsorbed arsenate on amorphous and nano crystalline MgFe-layered double hydroxides

2011 
This article investigated sorption of toxic and carcinogenic arsenate (AsO4 3−) ions on positively charged surface of amorphous and nano crystalline MgFe-layered double hydroxides (LDHs). Based on Brunauer–Emmett–Teller (BET) and Transmission Electron Microscopy (TEM), average size, and specific surface area of nano crystalline MgFe-LDHs, which was about range of about 50–200 nm and 90.2 m2/g, was lower and higher when compared to them of amorphous MgFe-LDHs, respectively. In addition, X-ray diffraction (XRD) peak and point of zero charge (PZC) of crystalline MgFe-LDHs was higher intensity and same, respectively, when compared to that of nano crystalline FeMg-LDHs. Adsorption rate of arsenate on amorphous MgFe-LDHs was a little faster when compared to that of nano crystalline MgFe-LDHs. In addition, as pH decreased, adsorption amount of arsenate on amorphous MgFe-LDHs increased significantly when compared to that of nano crystalline MgFe-LDHs. These results indicate that mechanism of arsenate in two materials was significantly different. We investigate sorption characteristic at pH 5, based on XRD and Fourier-transformed infrared (FTIR). In amorphous MgFe-LDHs, ferric arsenate precipitate was formed on surface of amorphous MgFe-LDHs and constituted the predominant surface arsenate. However, in nano crystalline MgFe-LDHs, arsenate was dominantly sorbed as a “non-surface-complexed” As–O bond on surface and anion exchange in interlayer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    13
    Citations
    NaN
    KQI
    []