Understanding complete ammonium removal mechanism in single-chamber microbial fuel cells based on microbial ecology

2021 
Abstract The removal of organics and ammonium from domestic wastewater was successfully achieved by a flat-panel air-cathode microbial fuel cell (FA-MFC). To elucidate the reason for complete ammonium removal in the single-chamber MFCs, microbial communities were analyzed in biofilms on the surface of each anode, separator, and cathode of separator-electrode assemblies (SEAs). The spatial distribution of bacterial families related to the nitrogen cycle varied based on local conditions. Since oxygen diffusing from the air-cathode created a locally aerobic condition, ammonia-oxidizing bacteria (AOB) Nitrosomonadacea and nitrite-oxidizing bacteria (NOB) Nitrospiraceae were present near the cathode. NOB (~12.1%) was more abundant than AOB (~4.4%), suggesting that the nitrate produced by NOB may be reduced back to nitrite by heterotrophic denitrifiers such as Rhodocyclaceae (~21.7%) and Comamonadaceae (~5%) in the anoxic zone close to the NOB layer. Near that zone, the “nitrite loop” also substantially enriched two nitrite-reducing bacterial families: Ignavibacteriaceae (~18.1%), facultative heterotrophs, and Brocadiaceae (~11.2%), anaerobic ammonium oxidizing autotrophs. A larger inner area of biofilm contained abundant heterotrophic denitrifiers and fermentation bacteria. These results indicate that the large-surface SEA of FA-MFC allows counter-diffusion between substrates and oxygen, resulting in interactions of bacteria involved in the nitrogen cycle for complete ammonium removal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    4
    Citations
    NaN
    KQI
    []