A remotely steerable Janus micromotor adsorbent for the active remediation of Cs-contaminated water

2019 
Abstract We report the development of magnetically steerable self-propelled micromotors that selectively remove radioactive Cs from contaminated water. Mesoporous silica microspheres were functionalized with the highly Cs-selective copper ferrocyanide, and half of the adsorptive particle surface was then coated with ferromagnetic Ni and catalytic Pt layers to fabricate Janus micromotors. The micromotor adsorbent displayed random propulsion in an H 2 O 2 solution via catalytic bubble evolution from the Pt surface, and the micromotor adsorbent self-propulsion resulted in an 8-fold higher Cs removal compared to the stationary adsorbent within one hour. The ferromagnetism of the Ni layer allowed the micromotor adsorbent to be magnetically and remotely steerable, and the propulsion speed under a magnetic field was ˜11-fold greater than it was in the absence of the magnetophoretic force. The adsorption of Cs by the self-propelling micromotor adsorbent and the subsequent magnetic recovery of the adsorbent enabled the successful removal of radioactive 137 Cs from aqueous solutions. More than 98% of the radioactive 137 Cs ions were removed from solution, even in the presence of competing ions, such as Na + (1000 ppm).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    21
    Citations
    NaN
    KQI
    []