Single-pixel optical modulation analyzer: a low-complexity frequency-dependent IQ imbalance monitor based on direct detection with phase retrieval.

2021 
Tiny mismatches in timing, phase, and/or amplitude between in-phase (I) and quadrature (Q) tributaries in an electro-optic IQ modulator, namely IQ imbalance, can severely affect high baud-rate and/or high modulation-order signals in modern coherent optical communications systems. To maintain such analog impairment within the tight penalty limit over wavelength and temperature during the product lifetime, in-service in-field monitoring and calibration of the IQ imbalance, including its frequency dependence, become increasingly important. In this study, we propose a low-complexity IQ monitoring technique based on direct detection with phase retrieval called a single-pixel optical modulation analyzer (SP-OMA). By reconstructing the optical phase information lost during the detection process computationally via phase retrieval, SP-OMA facilitates the in-service in-field monitoring of the frequency-dependent imbalance profile without sending dedicated pilot tones and regardless of any receiver/monitor-side IQ imbalance. The feasibility of SP-OMA is demonstrated both numerically and experimentally with a 63.25-Gbaud 16QAM signal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    0
    Citations
    NaN
    KQI
    []