Nanomagnonic cavities for strong spin-magnon coupling.

2020 
We present a theoretical approach to use ferro- or ferrimagnetic nanoparticles as microwave nanomagnonic cavities to concentrate microwave magnetic fields into deeply subwavelength volumes $\sim 10^{-13}$ mm$^3$. We show that the field in such nanocavities can efficiently couple to isolated spin emitters (spin qubits) positioned close to the nanoparticle surface reaching the single magnon-spin strong-coupling regime and mediate efficient long-range quantum state transfer between isolated spin emitters. Nanomagnonic cavities thus pave the way towards magnon-based quantum networks and magnon-mediated quantum gates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    20
    Citations
    NaN
    KQI
    []