Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation

2011 
Background—Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting >2 million patients in the United States alone. Despite decades of research, surprisingly little is known regarding the molecular pathways underlying the pathogenesis of AF. ANK2 encodes ankyrin-B, a multifunctional adapter molecule implicated in membrane targeting of ion channels, transporters, and signaling molecules in excitable cells. Methods and Results—In the present study, we report early-onset AF in patients harboring loss-of-function mutations in ANK2. In mice, we show that ankyrin-B deficiency results in atrial electrophysiological dysfunction and increased susceptibility to AF. Moreover, ankyrin-B+/− atrial myocytes display shortened action potentials, consistent with human AF. Ankyrin-B is expressed in atrial myocytes, and we demonstrate its requirement for the membrane targeting and function of a subgroup of voltage-gated Ca2+ channels (Cav1.3) responsible for low voltage-activated L-type Ca2+ current. Ankyri...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    87
    Citations
    NaN
    KQI
    []