Single molecule FRET detection in CdSe-QD donor and Cy5-labeled molecular chaperone acceptor complex by imaging microscopy

2011 
Abstract We report single molecule spectroscopic evidence of FRET in CdSe quantum dot (QD) conjugated with Cy5-labeled molecular chaperone systems in buffer solutions. Donor QDs are core-shell type nanocrystals covered with organic surfactants on their outermost surfaces, i.e. CdSe/ZnS/TOPO’s. As prototype molecular chaperones, we adopt prefoldins (PFDs), on which Cy5’s are labeled as acceptors. Donor QDs possess two-fold degenerate emission dipoles perpendicular to the c -axis, due to their Wurtzite crystal structures, while acceptor Cy5’s possess linear absorption and emission dipoles. Thus, their combination provides novel features to those in conventional FRET systems. PFDs are jellyfish-shaped hexameric co-chaperones of group II chaperonins, which recognize hydrophobic portions of denatured proteins and encapsulate them within their central cavities. Hence, PFDs will also capture the CdSe/ZnS/TOPO QDs due to its surface similarity to the denatured proteins. By introducing simple microscope setup for single QD-PFD-Cy5 spectroscopy, we have successfully captured the emission spectra in FRET regime. We also have observed peculiar features in time evolution profiles of single QD emissions conjugated with Cy5-labeled PFDs under polarization modulation measurements. Notable point of our hybrid conjugates is that they are biochemically in living action. We describe our present results in relation to possible protein reactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    3
    Citations
    NaN
    KQI
    []