Removal of trace organic contaminants by submerged membrane bioreactors

2009 
Laboratory scale experiments were conducted to investigate the removal mechanisms of trace organic contaminants using a submerged MBR system. The system was equipped with a Zenon ZW-1 membrane module. Bisphenol A and sulfamethoxazole were selected as model trace organics representing endocrine disrupting chemicals (EDCs) and pharmaceutically active compounds (PhACs), respectively. Results obtained from this study demonstrate an excellent performance of MBRs regarding basic water quality parameters such as turbidity, TOC and TN. However, removal efficiency of specific trace organic contaminants was found strongly dependent on their physicochemical properties. Approximately 90% removal of bisphenol A was recorded, while under the same condition, the removal efficiency of sulfamethoxazole was only about 50%. Both biodegradation and adsorption to the sludge were thought to be responsible for the removal of bisphenol A, which is a relatively hydrophobic organic compound. In contrast, the latter mechanism was absent for sulfamethoxazole as this compound is rather hydrophilic. Results reported here indicate that it may be possible to predict the removal efficiency of trace organic contaminants by a submerged MBR system based on their physicochemical properties. This would lead to better selection of subsequent complementary treatment processes prior to indirect potable water reuse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    53
    Citations
    NaN
    KQI
    []