Lemon-Fruit-Based Green Synthesis of Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles against Soft Rot Bacterial Pathogen Dickeya dadantii

2019 
Edible plant fruits are safe raw materials free of toxicants and rich in biomolecules for reducing metal ions and stabilizing nanoparticles. Zinc oxide nanoparticles (ZnONPs) and titanium dioxide nanoparticles (TiO2NPs) are the most produced consumer nanomaterials and have known antibacterial activities but have rarely been used against phytopathogenic bacteria. Here, we synthesized ZnONPs and TiO2NPs simply by mixing ZnO or TiO2 solution with a lemon fruit extract at room temperature and showed their antibacterial activities against Dickeya dadantii, which causes sweet potato stem and root rot disease occurring in major sweet potato planting areas in China. Ultraviolet–visible spectrometry and energy dispersive spectroscopy determined their physiochemical characteristics. Transmission electron microscopy, scanning electron microscopy, and X-ray diffraction spectroscopy revealed the nanoscale size and polymorphic crystalline structures of the ZnONPs and TiO2NPs. Fourier-transform infrared spectroscopy revealed their surface stabilization groups from the lemon fruit extract. In contrast to ZnO and TiO2, which had no antibacterial activity against D. dadantii, ZnONPs and TiO2NPs showed inhibitions on D. dadantii growth, swimming motility, biofilm formation, and maceration of sweet potato tuber slices. ZnONPs and TiO2NPs showed similar extents of antibacterial activities, which increased with the increase of nanoparticle concentrations, and inhibited about 60% of D. dadantii activities at the concentration of 50 µg∙mL−1. The green synthetic ZnONPs and TiO2NPs can be used to control the sweet potato soft rot disease by control of pathogen contamination of seed tubers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    24
    Citations
    NaN
    KQI
    []