Study on Reduced Chemical Mechanisms of Ammonia/Methane Combustion under Gas Turbine Conditions

2016 
As an alternative fuel and hydrogen carrier, ammonia is believed to have good potential for future power generation. To explore the feasibility of co-firing ammonia with methane, studies involving robust numerical analyses with detailed chemistry are required to progress toward industrial implementation. Therefore, the objective of this study is to determine a reduced mechanism for simulation studies of ammonia/methane combustion in practical gas turbine combustor conditions. First, five different-sized reduced mechanisms of the well-known Konnov’s mechanism were compared. The reduced mechanisms were tested for ignition delay time validation (zero dimensional) using ammonia/methane mixtures at high-pressure conditions relevant to gas turbine devices. Furthermore, the combustion products of ammonia/methane premixed laminar flames (one dimensional) were validated with the results from the full Konnov’s mechanism. Finally, computational fluid dynamics simulations of a turbulent flame (two dimensional) with a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    35
    Citations
    NaN
    KQI
    []