A novel role of SIRT2 in regulating gap junction communications via connexin‐43 in bovine cumulus‐oocyte complexes

2020 
SIRT2, the predominantly cytosolic sirtuin, plays important role in multiple biological processes, including metabolism, stress response, and aging. However, the function of SIRT2 in gap junction intercellular communications (GJICs) of cumulus-oocyte complexes (COCs) is not yet known. The purpose of the present study was to evaluate the effect and underlining mechanism of SIRT2 on GJICs in COCs. Here, we found that treatment with SIRT2 inhibitors (SirReal2 or TM) inhibited bovine oocyte nuclear maturation. Further analysis revealed that SIRT2 inactivation disturbed the GJICs of COCs during in vitro maturation. Correspondingly, both the Cx43 phosphorylation levels and MEK/MER signaling pathways were induced by SIRT2 inhibition. Importantly, SIRT2-mediated Cx43 phosphorylation was completely abolished by treatment with MEK1/2 inhibitor (Trametinib). Furthermore, treatment with SIRT2 inhibitors resulted in the high levels of MEK1/2 acetylation. Functionally, downregulating the MER/ERK pathways with inhibitors (Trametinib or SCH772984) could attenuate the closure of GJICs caused by SIRT2 inactivation in partly. In addition, inhibition of SIRT2 activity significantly decreased the membrane and zona pellucida localization of Cx43 by upregulating the levels of Cx43 acetylation. Taken together, these results demonstrated a novel role that SIRT2 regulates GJICs via modulating the phosphorylation and deacetylation of Cx43 in COCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []