Ferromagnetic quasi-atomic electrons in two-dimensional electride
2020
An electride, a generalized form of cavity-trapped interstitial anionic electrons (IAEs) in a positively charged lattice framework, shows exotic properties according to the size and geometry of the cavities. Here, we report that the IAEs in layer structured [Gd2C]2+·2e− electride behave as ferromagnetic elements in two-dimensional interlayer space and possess their own magnetic moments of ~0.52 μB per quasi-atomic IAE, which facilitate the exchange interactions between interlayer gadolinium atoms across IAEs, inducing the ferromagnetism in [Gd2C]2+·2e− electride. The substitution of paramagnetic chlorine atoms for IAEs proves the magnetic nature of quasi-atomic IAEs through a transition from ferromagnetic [Gd2C]2+·2e− to antiferromagnetic Gd2CCl caused by attenuating interatomic exchange interactions, consistent with theoretical calculations. These results confirm that quasi-atomic IAEs act as ferromagnetic elements and trigger ferromagnetic spin alignments within the antiferromagnetic [Gd2C]2+ lattice framework. These results present a broad opportunity to tailor intriguing ferromagnetism originating from quasi-atomic interstitial electrons in low-dimensional materials. Ferromagnetic quasi-atomic behavior of interstitial anionic electrons (IAEs) in practical electrides is yet to be discovered experimentally. Here, the authors reveal that IAEs in two-dimensional electride [Gd2C]²+⋅2e- behave as magnetic elements with their own magnetic moment.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
39
References
23
Citations
NaN
KQI