Alkane–OH Hydrogen Bond Formation and Diffusion Energetics of n-Butane within UiO-66

2017 
Hydrocarbon diffusion and binding within porous molecular networks are critical to catalysis, separations, and purification technologies. Fundamental insight into n-butane uptake and mobility within a new class of materials for separations, metal–organic frameworks (MOFs), has been gained through in situ infrared spectroscopy. These ultrahigh vacuum (UHV) based measurements revealed that adsorption of n-butane within UiO-66 proceeds through the formation of hydrogen bonds between the alkane molecules and hydroxyl groups located at the inorganic node of UiO-66. Modeling the gas transport of n-butane with Fick’s second law yielded diffusion coefficients at several temperatures. The Arrhenius parameter for the activation energy of diffusion was found to be 21.0 ± 1.2 kJ/mol. These studies have further shown that the rate-determining step for diffusion is likely the dissociation of n-butane from a binding site located within the tetrahedral pores of UiO-66.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    23
    Citations
    NaN
    KQI
    []