Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation

2016 
Listeria monocytogenes (Lm) causes severe foodborne illness (listeriosis). Previous molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE), were critical in detecting outbreaks that led to food safety improvements and declining incidence, but PFGE provides limited genetic resolution. A multiagency collaboration began performing real-time, whole-genome sequencing (WGS) on all US Lm isolates from patients, food, and the environment in September 2013, posting sequencing data into a public repository. Compared with the year before the project began, WGS, combined with epidemiologic and product trace-back data, detected more listeriosis clusters and solved more outbreaks (2 outbreaks in pre-WGS year, 5 in WGS year 1, and 9 in year 2). Whole-genome multilocus sequence typing and single nucleotide polymorphism analyses provided equivalent phylogenetic relationships relevant to investigations; results were most useful when interpreted in context of epidemiological data. WGS has transformed listeriosis outbreak surveillance and is being implemented for other foodborne pathogens.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    200
    Citations
    NaN
    KQI
    []