Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model.

2021 
Dielectric elastomers (DEs) are polymer materials consisting of a network of polymer chains connected by covalent cross-links. This type of structural feature allows DEs to generate large displacement outputs owing to the nonlinear electromechanical coupling and time-dependent viscoelastic behavior. The major challenge is to properly actuate the nonlinear soft materials in applications of robotic manipulations. To characterize the complex time-dependent viscoelasticity of the DEs, a nonlinear rheological model is proposed to describe the time-dependent viscoelastic behaviors of DEs by combining the advantages of the Kelvin-Voigt model and the generalized Maxwell model. We adopt a Monte Carlo statistical simulation method as an auxiliary method, to the best knowledge of the author which has never reportedly been used in this field, to improve the quantitative prediction ability of the generalized model. The proposed model can simultaneously describe the DE deformation processes under step voltage and alternating voltage excitation. Comparisons between the numerical simulation results and experimental data demonstrate the effectiveness of the proposed generalized rheological model with a maximum prediction error of 3.762% and root-mean-square prediction error of 9.03%. The results presented herein can provide theoretical guidance for the design of viscoelastic DE actuators and serve as a basis for manipulation control to suppress the viscoelastic creep and increase the speed response of the dielectric elastomer actuators (DEA).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []