Tuning the Mechanical Properties of Polymer-Grafted Nanoparticle Networks through the Use of Biomimetic Catch Bonds

2016 
The ability to precisely tune the mechanical properties of polymeric composites is vital for harnessing these materials in a range of diverse applications. Polymer-grafted nanoparticles (PGNs) that are cross-linked into a network offer distinct opportunities for tailoring the strength and toughness of the material. Within these materials, the free ends of the grafted chains form bonds with the neighboring chains, and tailoring the nature of these bonds could provide a route to tailoring the macroscopic behavior of the composite. Using computational modeling, we simulate the behavior of three-dimensional PGN networks that encompass both high-strength “permanent” bonds and weaker, more reactive labile bonds. The labile connections are formed from slip bonds and biomimetic “catchbonds. Unlike conventional slip bonds, the lifetime of the catch bonds can increase with an applied force, and hence, these bonds become stronger under deformation. With our 3D model, we examined the mechanical response of the comp...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    16
    Citations
    NaN
    KQI
    []