Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts

2018 
The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl2(L)(═CHC6H4-o-OiPr); the Grela catalyst nG (a derivative of HII with a nitro group para to OiPr); the Piers catalyst PII, [RuCl2(L)(═CHPCy3)]OTf; the third-generation Grubbs catalyst GIII, RuCl2(L)(py)2(═CHPh); and dianiline catalyst DA, RuCl2(L)(o-dianiline)(═CHPh), in all of which L = H2IMes = N,N′-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl2(H2IMes)(κ2-C3H6), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25–40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl2(H2IMes)(═CH2), ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    54
    Citations
    NaN
    KQI
    []