Common‐reflection‐surface stack: Image and attributes

2001 
The common‐reflection‐surface stack provides a zero‐offset simulation from seismic multicoverage reflection data. Whereas conventional reflection imaging methods (e.g. the NMO/dip moveout/stack or prestack migration) require a sufficiently accurate macrovelocity model to yield appropriate results, the common‐reflection‐surface (CRS) stack does not depend on a macrovelocity model. We apply the CRS stack to a 2-D synthetic seismic multicoverage dataset. We show that it not only provides a high‐quality simulated zero‐offset section but also three important kinematic wavefield attribute sections, which can be used to derive the 2-D macrovelocity model. We compare the multicoverage‐data‐derived attributes with the model‐derived attributes computed by forward modeling. We thus confirm the validity of the theory and of the data‐derived attributes. For 2-D acquisition, the CRS stack leads to a stacking surface depending on three search parameters. The optimum stacking surface needs to be determined for each point...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    275
    Citations
    NaN
    KQI
    []