Advances and Challenges in Palaeoenvironmental Studies Based on Oxygen Isotope Composition of Skeletal Carbonates and Phosphates

2021 
Oxygen isotopes are widely used in palaeoenvironmental and palaeoclimatic studies as they record variations in the precipitation temperature of biogenic carbonates and phosphates. Problems associated with the preservation state of fossils, selection of the proper temperature equation, vital effects occurring during biomineralization, habitat effects of organisms as well as salinity, bathymetry and water circulation changes limit, however, the applicability of oxygen isotopes to reconstruction of ancient environmental settings. The progress of oxygen isotope studies, temperature calculations and ambiguities of the isotope record are discussed in this paper. The same applies to the methods of retrieving reliable temperature signals and the record of water chemistry changes based on well-preserved calcareous and phosphatic fossils. Sometimes neglected importance of sedimentological and faunistic data associated with sea-level changes and salinity variations is emphasised as an important tool for refinement of the temperature trends of epeiric sedimentary basins. In addition, published case datasets and new laboratory techniques, including micro-area and clumped isotope analyses, are presented to demonstrate examples and prospective ways of extension of the scope of palaeoenvironmental research. The provided information may be used in discussion and a critical review of published oxygen isotope data and their palaeoenvironmental interpretations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    347
    References
    0
    Citations
    NaN
    KQI
    []