The smallest eigenvalue distribution of the Jacobi unitary ensembles

2021 
In the hard edge scaling limit of the Jacobi unitary ensemble generated by the weight $x^{\alpha}(1-x)^{\beta},~x\in[0,1],~\alpha,\beta>0$, the probability that all eigenvalues of Hermitian matrices from this ensemble lie in the interval $[t,1]$ is given by the Fredholm determinant of the Bessel kernel. We derive the constant in the asymptotics of this Bessel-kernel determinant. A specialization of the results gives the constant in the asymptotics of the probability that the interval $(-a,a),a>0,$ is free of eigenvalues in the Jacobi unitary ensemble with the symmetric weight $(1-x^2)^{\beta}, x\in[-1,1]$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []