Substrate Specificity and Leaving Group Effect in Ester Cleavage by Metal Complexes of an Oximate Nucleophile

2017 
Deprotonated zinc(II) and cadmium(II) complexes of a tridentate oxime nucleophile (1, OxH) show a very high reactivity, breaking by 2–3 orders of magnitude the previously established limiting reactivity of oximate nucleophiles in the cleavage of substituted phenyl acetates and phosphate triesters, but are unreactive with p-nitrophenyl phosphate di- and monoesters. With reactive substrates, these complexes operate as true catalysts through an acylation–deacylation mechanism. Detailed speciation and kinetic studies in a wide pH interval allowed us to establish as catalytically active forms [Cd(Ox)]+, [Zn(Ox)(OH)], and [Zn(Ox)(OH)2]− complexes. The formation of an unusual and most reactive zinc(II) oximatodihydroxo complex was confirmed by electrospray ionization mass spectrometry data and supported by density functional theory calculations, which also supported the previously noticed fact that the coordinated water in [Zn(OxH)(H2O)2]2+ deprotonates before the oxime. Analysis of the leaving group effect on t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    4
    Citations
    NaN
    KQI
    []