Evaporation Process in Porous Silicon: Cavitation vs Pore Blocking.

2021 
We measured sorption isotherms for helium and nitrogen in wide temperature ranges and for a series of porous silicon samples, both native samples and samples with reduced pore mouth, so that the pores have an ink-bottle shape. Combining volumetric measurements and sensitive optical techniques, we show that, at a high temperature, homogeneous cavitation is the relevant evaporation mechanism for all samples. At a low temperature, the evaporation is controlled by meniscus recession, the detailed mechanism being dependent on the pore length and mouth reduction. Native samples and samples with ink-bottle pores shorter than 1 μm behave as an array of independent pores. In contrast, samples with long ink-bottle pores exhibit long-range correlations between pores. In this latter case, evaporation takes place by a collective percolation process and not by heterogeneous cavitation as previously proposed. The variety of evaporation mechanisms points to porous silicon being an anisotropic three-dimensional pore network rather than an array of straight independent pores.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []