Imprinting self-assembled patterns of lines at a semiconductor surface, using heat, light, or electrons

2011 
The fabrication of nano devices at surfaces makes conflicting demands of mobility for self-assembly (SA) and immobility for permanence. The solution proposed in earlier work from this laboratory involved pattern formation in physisorbed molecules by SA, followed by localized reaction to chemically imprint the pattern substantially unchanged, a procedure we termed molecular-scale imprinting (MSI). Here, as proof of generality we extended this procedure, previously applied to imprinting circles on Si(111)-7 × 7, to SA lines of 1-chloropentane (CP) on Si(100)-2 × 1. The physisorbed lines consisted of pairs of CP that grew perpendicular to the Si dimer rows, as shown by scanning tunneling microscopy and ab initio theory. Chemical reaction of these lines with the surface was triggered in separate experiments by three different modes of energization: heat, electrons, or light. In all cases the CP molecules underwent MSI with a Si atom beneath so that the physisorbed lines of CP pairs were imprinted as chemisorbed lines of Cl pairs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    22
    Citations
    NaN
    KQI
    []