Homogeneous Electrochemical Reduction of CO2 to CO by a Cobalt Pyridine Thiolate Complex.

2020 
The chemical and electrochemical reduction of CO2 to value added chemicals entails the development of efficient and selective catalysts. Synthesis, characterization and electrochemical CO2 reduction activity of a air-stable cobalt(III) diphenylphosphenethano-bis(2-pyridinethiolate)chloride [{Co(dppe)(2-PyS)2}Cl, 1-Cl] complex is divulged. The complex reduces CO2 under homogeneous electrocatalytic conditions to produce CO with high Faradaic efficiency (FE > 92%) and selectivity in the presence of water. Through detailed electrochemical investigations, product analysis, and mechanistic investigations supported by theoretical calculations, it is established that complex 1-Cl reduces CO2 in its Co(I) state. A reductive cleavage leads to a dangling protonated pyridine arm which enables facile CO2 binding through a H-bond donation and facilitates the C-O bond cleavage via a directed protonation. A systematic benchmarking of this catalyst indicates that it has a modest overpotential ( approximately 180 mV) and a TOF of approximately 20 s(-1) for selective reduction of CO2 to CO with H2O as a proton source.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    15
    Citations
    NaN
    KQI
    []