Yeast Chd1p remodels nucleosomes with unique DNA unwrapping and translocation dynamics

2018 
Chromodomain-helicase-DNA-binding protein 1 (CHD1) remodels chromatin by translocating nucleosomes along DNA, but its mechanism remains poorly understood. Here, we employ a single-molecule fluorescence approach to characterize nucleosome remodeling by yeast CHD1 (Chd1p). We show that Chd1p translocates nucleosomes in steps of multiple base pairs per ATP. ATP binding to Chd1p induces a transient unwrapping of the exit-side DNA, and facilitates nucleosome translocation. ATP hydrolysis induces nucleosome translocation, which is followed by the rewrapping upon the release of the hydrolyzed nucleotide. Multiple Chd1ps binding to a single nucleosome sequentially moves a histone octamer with a preference to the center of DNA fragments, suggesting a new mechanism for regularly spaced nucleosome generation by Chd1p. Our results reveal the unique mechanism by which Chd1p remodels nucleosomes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    2
    Citations
    NaN
    KQI
    []